Đồng hóa Trao_đổi_chất

Xem thêm thông tin: Đồng hóa

Đồng hóa là tập hợp các quá trình chuyển hóa nhằm "xây dựng", tổng hợp các phân tử phức tạp với năng lượng được lấy từ các phản ứng dị hóa. Nhìn chung, các phân tử phức tạp tạo thành cấu trúc tế bào được xây dựng dần dần từ các tiền chất nhỏ và đơn giản hơn. Quá trình đồng hóa liên quan đến ba giai đoạn cơ bản. Bước đầu tiên, tổng hợp các tiền chất như axit amin, monosaccharide, isoprenoidnucleotide, bước thứ hai, hoạt hóa chúng trở thành dạng phản ứng với năng lượng từ ATP, và bước thứ ba, lắp ráp các tiền chất này và tạo nên các phân tử phức tạp như protein, polysaccharides, lipidaxit nucleic.

Các sinh vật khác nhau thì có những cách khác nhau để tổng hợp các chất trong tế bào của mình. Các sinh vật tự dưỡng như thực vật có thể xây dựng các phân tử hữu cơ phức tạp trong các tế bào như polysaccharide và protein từ các phân tử chỉ đơn giản như carbon dioxide và nước. Các sinh vật dị dưỡng, mặt khác, để sản xuất các phân tử lớn như vậy lại đòi hỏi một đầu vào phức tạp hơn, chẳng hạn như monosaccharide và axit amin. Các sinh vật có thể được phân loại hơn nữa dựa trên năng lượng tối ưu cho chúng: sinh vật quang tự dưỡng và quang dị dưỡng thu năng lượng từ ánh sáng mặt trời, trong khi sinh vật hóa tự dưỡnghóa dị dưỡng lại có được năng lượng từ các phản ứng oxy hóa vô cơ.

Cố định cacbon

Các tế bào thực vật (được giới hạn bởi các vách trên hình) chứa đầy lục lạp (xanh lục), là nơi quang hợp

Quang hợp là quá trình tổng hợp cacbohydrat nhờ ánh sáng mặt trời và carbon dioxide (CO2). Ở thực vật, vi khuẩn lam và tảo, trong quang hợp thải oxy, nước được "tách" ra (gọi là quá trình quang phân li) và ôxy tạo ra như một sản phẩm thải. Quá trình này sử dụng ATP và NADPH được tạo ra bởi các trung tâm quang hóa, và như đã mô tả ở trên, để chuyển đổi CO2 thành glycerate 3-phosphate, sau đó chất này có thể biến đổi thành glucose. Phản ứng cố định cacbon này được thực hiện bởi enzyme RuBisCO và là một phần của chu trình Calvin - Benson.[55] Có thể tạm nói có ba loại quang hợp xảy ra ở thực vật, cố định carbon C3, cố định carbon C4quang hợp CAM. Chúng khác nhau theo lộ trình mà CO2 đi vào chu trình Calvin: các cây C3 thì cố định CO2 trực tiếp, trong khi quang hợp C4 và CAM gắn CO2 vào các hợp chất khác trước, đây là một đặc điểm thích nghi để chống chịu với ánh sáng mặt trời gay gắt và điều kiện khô hạn.[56]

Trong các sinh vật nhân sơ có quang hợp, các cơ chế cho quá trình cố định cacbon là đa dạng hơn. Ở những sinh vật này, cacbon điôxít có thể được cố định bởi chu trình Calvin - Benson, chu trình axit citric đảo ngược,[57] hoặc cacboxyl hóa acetyl-CoA.[58][59] Các sinh vật nhân sơ hóa tự dưỡng cũng cố định CO2 thông qua chu trình Calvin - Benson, nhưng sử dụng năng lượng từ các hợp chất vô cơ để thúc đẩy phản ứng.[60]

Cacbohydrat và glycan

Trong quá trình chuyển hóa cacbohydrat, các axit hữu cơ đơn giản có thể được chuyển đổi thành monosaccharide như glucose và sau đó được sử dụng để "lắp ráp" nên các polysaccharide như tinh bột. Quá trình tạo ra glucose từ các hợp chất như pyruvate, lactate, glycerol, glycerate 3-phosphate và amino axit được gọi là tân tạo đường hay gluconeogenesis. Quá trình tân tạo đường biến pyruvate thành glucose-6-phosphate thông qua một loạt các chất trung gian, nhiều chất trong số đó cũng giống với trong đường phân.[37] Tuy nhiên, con đường này không chỉ đơn giản là đảo ngược lại con đường đường phân, vì có một vài bước được xúc tác bởi các enzyme không liên quan gì đến đường phân cả. Điều này là quan trọng vì nó cho phép quá trình hình thành và phân hủy glucose được quy định và điều hòa riêng biệt, và ngăn cản cả hai con đường chạy đồng thời và trở thành một chu trình vô ích (giống như một chiếc xe mà không kiểm soát được "tiến lên" hay "lùi xuống").[61][62]

Mặc dù chất béo là một cách phổ biến để dự trữ năng lượng, nhưng ở các động vật có xương sống thì không thể chuyển hóa lượng chất béo dự trữ này thành glucose thông qua tân tạo đường vì các sinh vật này không thể chuyển đổi acetyl-CoA thành pyruvate; thực vật thì có thể, nhưng động vật thì không, chúng thiếu bộ máy enzym cần thiết.[63] Kết quả là, nếu nhịn đói một thời gian dài, động vật có xương sống cần tạo ra các thể xeton từ các axit béo để thay thế glucose vì một số mô như não không thể chuyển hóa các axit béo.[64] Ở các dạng sinh vật khác như thực vật và vi khuẩn, vấn đề chuyển hóa này được giải quyết bằng chu trình glyoxylate, đi qua bước decarboxyl hóa trong chu trình axit citric và cho phép biến đổi acetyl-CoA thành oxaloacetate, chất này có thể được sử dụng để sản xuất glucose.[63][65]

Polysaccharide và glycan được tổng hợp bằng cách bổ sung tuần tự monosaccharide nhờ enzyme glycosyltransferase. Enzyme này sẽ chuyển đường từ một chất cho đường-phosphate phản ứng như uridine diphosphate glucose (UDP-glucose) đến một nhóm nhận hydroxyl trên chuỗi polysaccharide đang được tổng hợp. Vì bất kỳ nhóm hydroxyl nào trên vòng của cơ chất cũng có thể là nhóm nhận này, các polysaccharide được tạo ra có thể có với cấu trúc thẳng hoặc phân nhánh.[66] Polysaccharide được tạo ra có thể có các chức năng cấu trúc hoặc trao đổi chất, hoặc được gắn vào các lipid và protein bằng các enzyme gọi là oligosaccharyltransferases.[67][68]

Axit béo, isoprenoid và steroid

Phiên bản đơn giản hóa của quá trình tổng hợp steroid với các trung gian isopentenyl pyrophosphate (IPP), dimethylallyl pyrophosphate (DMAPP), geranyl pyrophosphate (GPP) và squalene được biểu diễn. Một số trung gian được bỏ qua để bớt rối

Axit béo được tạo ra bởi các enzyme tổng hợp axit béo bằng cách trùng hợp và sau đó là khử đi các đơn vị acetyl-CoA. Các chuỗi acyl trong các axit béo được mở rộng bằng một chu trình phản ứng thêm nhóm acyl, đầu tiên là khử để tạo ra rượu, khử nước để tạo thành nhóm alkene và sau đó lại khử tiếp để tạo thành nhóm alkane. Các enzyme sinh tổng hợp axit béo được chia thành hai nhóm: nếu ở động vậtnấm, tất cả các phản ứng tổng hợp axit béo này được thực hiện bởi một loại protein loại I đa năng,[69] thì ở thực vật và vi khuẩn lại có các enzyme loại II riêng biệt để thực hiện từng bước trên con đường.[70][71]

Terpeneisoprenoid là một nhóm lớn các chất béo bao gồm các carotenoid và tạo thành lớp lớn nhất trong các sản phẩm tự nhiên đến từ thực vật.[72] Các hợp chất này được tạo ra bằng cách lắp ráp và cải biến các đơn vị isoprene được cho từ tiền chất phản ứng isopentenyl pyrophosphatedimethylallyl pyrophosphate.[73] Những tiền chất này có thể được tổng hợp theo nhiều cách khác nhau. Ở động vật và cá hồi, con đường mevalonate tạo ra các hợp chất này từ acetyl-CoA,[74] trong khi ở thực vật và vi khuẩn, con đường không mevalonate sử dụng pyruvateglyceraldehyde 3-phosphate làm cơ chất.[73][75] Một phản ứng quan trọng sử dụng các isoprene được hoạt hóa này là phản ứng sinh tổng hợp steroid. Ở đây, các đơn vị isoprene được kết hợp với nhau để tạo thành squalene và sau đó được gấp lại và tạo thành một tập hợp các vòng để tạo ra lanosterol.[76] Lanosterol sau đó có thể được chuyển đổi thành các steroid khác như cholesterolergosterol.[76][77]

Protein

Các sinh vật khác nhau có những điểm khác nhau về khả năng tổng hợp 20 axit amin thông thường. Hầu hết vi khuẩn và thực vật có thể tổng hợp tất cả hai mươi loại này, nhưng động vật có vú chỉ có thể tổng hợp mười một axit amin không thiết yếu, vì vậy mà chín axit amin thiết yếu còn lại phải được lấy từ thực phẩm.[7] Một số loài ký sinh đơn giản, chẳng hạn như vi khuẩn Mycoplasma pneumoniae, không có quá trình tổng hợp axit amin và sẽ lấy axit amin trực tiếp từ vật chủ của chúng.[78] Tất cả các axit amin được tổng hợp từ các chất trung gian trong quá trình đường phân, chu trình axit citric hoặc con đường pentose phosphat. Nitơ được cung cấp bởi glutamate và glutamine. Tổng hợp axit amin phụ thuộc vào sự hình thành của axit alpha-keto thích hợp, sau đó được chuyển thành dạng axit amin.[79]

Axit amin được tạo thành protein bằng cách lắp ráp với nhau để tạo thành một chuỗi liên kết peptit. Các protein khác nhau do có các trình tự khác nhau của chuỗi bên axit amin: đây chính là cấu trúc bậc một của protein. Cũng giống như các chữ cái của bảng chữ cái có thể được kết hợp để tạo thành một loạt các từ vô tận, các axit amin có thể được liên kết thành các trình tự khác nhau để tạo thành một lượng rất lớn các protein. Protein được tạo ra từ các axit amin, những axit amin này đã được hoạt hóa bằng cách gắn vào một phân tử tRNA qua một liên kết este. Tiền chất aminoacyl-tRNA này được tạo ra trong một phản ứng cần năng lượng ATP và được thực hiện nhờ một aminoacyl tRNA synthetase.[80] Sau đó, aminoacyl-tRNA này là cơ chất cho ribosome, sẽ giúp tích hợp axit amin vào chuỗi protein đang kéo dài, dựa vào RNA thông tin đang được dịch mã.[81]

Tổng hợp và "cứu vãn" nucleotide

Nucleotide được tạo thành từ các axit amin, carbon dioxitaxit formic trong các con đường đòi hỏi phải có một lượng lớn năng lượng chuyển hóa.[82] Do đó, hầu hết các sinh vật đều có hệ thống hiệu quả để "cứu vãn" các nucleotide đã được hình thành trước đó.[82][83] Purine được tổng hợp dưới dạng các nucleoside (các bazơ gắn liền với ribose).[84] Cả adenineguanine đều được tạo ra từ tiền chất nucleoside inosine monophosphate, được tổng hợp bằng cách sử dụng các nguyên tử từ các axit amin glycine, glutamineaxit aspartic, cũng như formate được chuyển từ coenzyme tetrahydrofolate. Pyrimidine, mặt khác, được tổng hợp từ các thể orotate, được tạo thành từ glutamineaspartate.[85]

Liên quan

Tài liệu tham khảo

WikiPedia: Trao_đổi_chất http://www.britannica.com/EBchecked/topic/377325 http://www.sparknotes.com/testprep/books/sat2/biol... http://www.biomed.cas.cz/physiolres/pdf/53%20Suppl... http://bioinformatics.charite.de/supercyp/ http://orbit.dtu.dk/en/publications/from-genomes-t... http://adsabs.harvard.edu/abs/1957Natur.179..988K http://adsabs.harvard.edu/abs/1981RSPTB.293....5B http://adsabs.harvard.edu/abs/1996JMolE..43..293M http://adsabs.harvard.edu/abs/2001PNAS...98..805P http://adsabs.harvard.edu/abs/2003Sci...300..931F